
11 th European Conference on Applied Superconductivity

Abstract Book

Fabrication and physical characterization of electrochemically deposited FeSe

Frucci G.¹, Moreno M.², Besi Vetrella U.³, *Corato V.*³, Pozio A.², Appetecchi G.B.², De Marzi G.⁴

¹Eindhoven University of Technology - Netherlands, ²ENEA, UTRINN-IFC - Italy, ³EURATOM-ENEA - Italy, ⁴ENEA - Italy

A superconducting critical temperature, Tc, increasing from 8 K to 37 K under an applied external pressure, has been recently reported in iron selenide (FeSe) compounds [1]. Iron-based superconductors are particularly appealing for high magnetic field applications thanks to their promising superconducting properties (i. e. , extremely high upper critical field and irreversibility field). Based on recent progresses in fabricating FeSe superconducting films [3], we successfully electrodeposited FeSe films with a standard three-electrode method. In the presented electrochemical approach, the film has been deposited onto a Cu thin layer at -1V vs. Ag/AgCl in an inert gas saturated solution with a Pt counter electrode at room temperature. The solution employed has been achieved by dissolving 0.03 M FeCl2 4H2O, 0.015 M SeO2 and 0.1 M Na2SO4 into distilled water. The mole ratio of Fe and Se has been controlled by carefully tuning both the electric potential (1V) and pH value (~2). In order to infer the desired crystal structure and morphology of the deposited films, the samples have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The onset of the superconductive transition together with its critical parameters (Tc, Jc) has been measured by both standard four-probe technique and magnetization measurements as a function of the temperature and external magnetic field.

References:

- [1] S. Medvedev et al., Nat. Mat. 8, 630, 2009
- [2] W. Si et al., Nat. Commun. 4, 1347, 2013
- [3] S. Demura et al., Sol. State Commun. 154, 40, 2013

Acknowledgements:

G. F. acknowledges financial support from PON Ricerca e Competitività 2007-2013 under grant agreement PON NAFASSY, PONa3_00007.