

Synthesis and characterization of TiO₂ nano-tubes as anodic material in Lithium-ion batteries

A.Dell'Era¹, *F. Mura¹*, *M. Pasquali¹*, *A. Pozio² and F. Zaza¹* ¹Dip. Scienze di Base e Applicate all'Ingegneria "Sapienza" Roma ²ENEA Casaccia

Synthesis of nano-tubular TiO₂

TiO₂ lattice shows more crystalline forms(polymorphs)

Presence and relative amount of different phases greatly influences electrochemical performances

TT main factor investigated in TiO₂ synthesis procedures: phase composition affected

 Heat treatment: calcination in air at 500-600°C(<u>heating rate</u> <u>1°C/min)</u>

nanoforum

ROMA 24 25 26 SETTEMBRE 2013

Sapienza Università di Roma Ità di Ingegneria Civile e Indu Via Eudossiana 18

Structural and morfological characterization of the TiO₂ nanotube

- Presence, relative amount and lattice crystallization of TiO_2 polymorphs vary with calcination temperature(TT)

- No rutile phase observed for TT< 540°C; trace amounts at TT= 540°C

- Higher TT, desto higher amounts of rutile present

- No substantial changes in phase composition after ageing(exposure to air)

• Easiness of preparation.

- The nanotube length and the porous diameter is strictly related to the anodization time.
 - The voltage and fluoride\water composition ratio influence the rate of the nanotube growth.
- The duration and temperature of the heat treatment determine the crystal structure of nanotube.

Electrochemical behavior of TiO₂

Mura et al., Electrochimica Acta 54 (2009) pp.3794-3798. Mura et al., Electrochimica Acta 55 (2010) pp. 2246-2251.