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POLYMER ELECTROLYTE FUEL CELLS ELECTRODES 
 
A performance study 
 
A. CEMMI, C. PAOLETTI, A. POZIO 
 
 
 
Abstract 
This work is focused on the study of electro-crystallization of Pt nanostructured particles to be used as a catalyst on 
carbon material support (carbon black and carbon nanotubes) for polymer electrolyte fuel cells electrodes. 
Electrochemical single and multiple pulse galvanostatic depositions have been applied defining the best operational 
parameters leading to a highly nanostructured electro-catalysts morphology. Electrochemical measurements such as 
cyclic voltammetries have been carried out in order to determine the electrochemical active surface together with 
morphological analysis by means of scanning electron microscopy. The influence of electro-deposition parameters on 
the Pt loading have been extensively studied and optimized. 
The investigated materials have been then applied as gas diffusion electrodes (GDE) and characterized by means of 
polarization curves in half-cell and in single cell test station. 
A comparison with a standard E-TEK electrode, prepared by conventional powder-type technique, shows that the 
electrodeposited catalyst electrodes present comparable performances and their maximum specific power density 
values are similar or better than that of standard E-TEK cathode. These results strongly encourage the implementation 
of electrodes obtained by electro-deposition in a real-world device. 
 
 
Key words: Polymer electrolyte fuel cell, electro-catalyst, membrane electrode assembly (MEA), electro-deposition, 
carbon nanotubes. 
 
 
Riassunto 
Il lavoro presentato nel seguente RT è stato svolto nell’ambito del Progetto di ricerca FISR 2005-2008 che riguarda lo 
sviluppo delle celle a combustibile e dei sistemi per le loro applicazioni. 
Nell’ambito di questa ricerca sono state studiate metodologie elettrochimiche per la cristallizzazione di particelle di 
platino nanostrutturate su supporti di materiale carbonioso (polvere di carbone Vulcan XC72R e nanotubi di carbonio a 
parete multipla MWNTs) da impiegare come elettrocatalizzatori nelle celle a combustibile ad elettrolita polimerico.  
I catalizzatori sono stati depositati mediante tecniche galvanostatiche a singolo e multiplo impulso (GED e PED 
rispettivamente) e caratterizzati dal punto di vista elettrochimico (voltammetrie cicliche) e morfologico (FEG-SEM). È 
stata studiata  l’influenza dei parametri operativi sulla morfologia e sul carico di platino in modo da ottenere un 
catalizzatore con elevate prestazioni elettrochimiche e caratterizzato da una estesa nanostruttura superficiale. 
I materiali sono stati quindi utilizzati nella preparazione di elettrodi a diffusione gassosa (GDE), degli assemblati 
membrana-elettrodo e caratterizzati attraverso curve di polarizzazione in semi-cella ed in cella. I risultati mostrano che i 
sistemi con catalizzatore elettrodepositato hanno elevate densità di potenza specifica e prestazioni del tutto paragonabili 
o migliori rispetto ad un elettrodo commerciale E-TEK. 
 
 
Parole chiave: PEFC, tecniche di elettrodeposizione, elettrocatalizzatore, nanotubi di carbonio, MEA.
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1. INTRODUCTION 

Polymer electrolyte fuel cells (PEFCs) have significant advantages such as the 

elimination of electrolyte leakage, lower corrosion, simplification of stack design. These 

promising attributes have stimulated many applications in areas such as consumer electronics, 

aerospace and transportation1. Nevertheless, several drawbacks in PEFCs need to be 

overcome including high costs, high catalyst loading and low CO tolerance. 

From the perspective of electrode materials, the cost problem can be faced in two ways: 

improvement of the catalyst utilization and reduction of the catalyst loading. Progress in fuel 

cell research not only has led to increased power density and efficiency but also to an 

optimization of preparation techniques and materials fabrication. 

It is worth noting that only the catalyst in contact with both membrane electrolyte and 

reaction gas is electrochemically active. In fact, in the catalytic layer the so-called “three-

dimensional reaction interface” is recognized as the region in which electrons, protons and 

reactant gases performing reduction/oxidation reactions are present at the same time. For this 

reason, catalyst nanoparticles (Pt or alloy) deposited on high surface carbon support are 

requested to be covered by a Nafion™ ionomer solution, to ensure a good ionic conduction 

with polymeric membrane (acting as electrolyte). 

This has been widely previously2-4 demonstrated and obtained via impregnation of gas 

diffusion electrodes with solubilised ionomer (e.g. Nafion™). 

Common manufacturing methods do not allow a good localization of the catalyst and, as 

a consequence, utilization of Pt is definitely low. In order to obtain a large interface area 

between the polymer electrolyte and the catalyst, several novel fabrication processes, besides 

casting5, screen printing6, brushing7, spreading8, spraying9-11 have been developed. By these 

alternative methods, the catalyst allow for depositing directly on the surface of carbon 

electrode or membrane, decreasing noble metal loading but maintaining adequate 

performances. 

A novel method based on the electro-spray technique has been developed by Ben’ýtez et 

al.12 and characterized by different techniques, which showed both morphological and 

structural improvements contributing to a better catalyst utilization compared to conventional 

methods. Several electrode membrane assemblies (MEAs) have been fabricated with 

electrodes prepared by three different methods. MEAs obtained via electro-spray exhibited a 

power density three times higher than those prepared with impregnation methods and eight 
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times higher than those prepared by the spray technique with Pt loadings of 0.5 mg cm 2.

Moreover, the power density obtained was twice better than that of a commercial E-TEK 

electro-catalyst. However, the same researchers have studied Pt utilization in electrodes 

prepared by impregnation, spray and electro-spray methods and found that the impregnation 

method gives a higher Pt utilization than the other two methods. They attributed this 

behaviour to the high porous structure achieved from a complete solvent removal after a long 

period of impregnation, while in the other two methods, the immediate elimination of solvent 

leaves a poorly porous structure13.

Many efforts have been taken in developing electrodes with a high efficiency of noble 

metal catalyst improving by catalyst ink preparation14 and novel Pt deposition methods. 

Thus, common vacuum deposition methods that include physical15,16 or thermal17

vapour deposition have been employed. Sputtering technique is considered as one of the best 

approaches to the catalyst deposition onto the gas diffusion layers. However, this technique is 

not a massive production method and requires expensive vacuum equipments  

Otherwise, electro-deposition18,19 of noble metal catalyst on un-catalyzed carbon electrodes 

opens a promising route for increasing the present efficiency of metal catalysts. 

In fact, the use of an electric field to deposit catalyst particles ensures their localization 

only in regions with a triple phase contact (carbon substrate/electro-catalyst/electrolyte), and 

the Pt loading can be noticeably reduced (LPt<0.1 mg cm-2)20. Moreover, considerable 

advantages can be achieved: 

- high purity of deposits 

- catalyst uniform distribution on the support 

- Pt particles of reduced size  

- easier procedure: absence of reducing agent and surfactants, as well as hydrogen 

treatments at high temperature 

- easier industrial scale-up 

Electro-deposition techniques are the most studied by researchers who try to obtain 

smaller Pt particles in order to enlarge the catalytic area and, accordingly, to enhance the 

catalytic activity for structure-sensitive reactions21.

It is possible to find a significant correlation between electro-catalytic behaviours and 

nanoparticles structure. In fact, in a previous technical report22 we found that electro-

deposition parameters allow to significantly control the Pt particles morphology, leading to 
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spherical, dendritic and lamellar shapes. Results show that electro-catalytic properties are 

influenced by the deposit morphology: nanostructured globular surface shapes give the best 

electro-catalytic performances. 

Finally, while activated carbon is still the most common support material for 

electrocatalysis, new forms of carbon such as fullerenes and nanotubes, which have become 

more available recently, have also been indicated as suitable materials for electrode and 

catalyst support in PEFCs. 

In this work a preparation method based on the electrochemical deposition of low-

loading Pt nanoparticles on PEFCs gas diffusion electrodes, giving improved performance 

and catalyst utilization versus commercial Pt catalyst is presented. 

Pt nanoparticles electro-catalysts have been directly deposited on gas diffusion layers 

(GDLs) by means of galvanostatic polarization techniques: single and multiple pulse electro- 

depositions.

The subject has been thoroughly investigated not only in terms of deposition techniques 

optimization, but also by testing in-house prepared PEFCs in a single-cell station. This way, 

the actual performances of these new materials have been evaluated in real working 

conditions and a detailed description of the corresponding electrochemical performances is 

here reported. 

Morphological features and Pt loading have been studied to characterize the electrodes 

and a correlation with their electrochemical performances has been found. 
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2. EXPERIMENTAL

Electrodes preparation and single fuel cell realization is schematically reported in the 

following:

1. diffusive ink preparation 

2. diffusive layer spraying on carbon paper

3. thermal treatments 

4. catalyst electrodeposition (electrochemical characterization and chemical analysis of 

deposits)

5. electrode/membrane/electrode assembly (MEA) 

6. fuel cell test 

2.1 ELECTRODE PREPARATION  

Electrodes preparation has involved the following materials: 

TGPH-090 carbon paper (Toray Industries Inc.) of 0.3 mm thickness, 74% porosity 

and mass density of 0.45 g cm-3;

Vulcan XC-72R carbon and Super-PTM carbon black powder; 

Multi-wall carbon nanotubes (Aldrich) 90% purity; 

Polytetrafluoroethylene (PTFE, Hoechst, Hostaflon TF5033 type, 35%wt solution); 

Isopropylic alcohol (Carlo Erba, 99.9% wt); 

Alcoholic solution of Nafion™ 5% (DuPont); 

The diffusive layers have been prepared by the commonly used spray deposition 

method. A homogenous alcoholic suspension containing carbon powder and 20-30 %wt of 

PTFE has been immersed in an ultrasonic bath at room temperature. To facilitate the 

dispersion of carbon particles the suspension has been mixed with a water/isopropylic alcohol 

(1:1) solution. 

The mixture has been stirred in ultrasonic bath during the whole procedure to remove 

the air trapped inside the extremely porous carbon particles, improving their wettability and 

homogeneity in the dispersion.  

Then, the diffusive ink has been homogeneously sprayed onto the whole surface of a 

carbon paper support forming the gas diffusion layer (GDL, Fig.1). The carbon amount in the 

diffusion layer ranges from 1.5 and 2 mg cm-2. Although this technique guarantees a certain 
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reproducibility, it is worth noting that about a 20-30 % of material loss has been observed and 

the thickness control is not very easy. 

Fig. 1. – GDL SEM image: carbon paper support and diffusive layer 
Afterwards, GDLs have been sintered in a oven at 120°C for 1 h, at 280°C for 2 h and at 

350°C for 30 min. This thermal step is necessary to remove the dispersion agent contained in 

the PTFE suspension. Moreover, PTFE is molten, aggregating the carbon powder particles 

and giving an hydrophobic character to the gas diffusion layer. 

Pt electro-deposition onto the GDLs and characterization

A sample of GDL with suitable size inserted in an electrode holder has been used as a 

working electrode before electro-deposition. A round plexiglass mask allowed for the contact 

between the electrode surface and the solution. (Fig.2) 

Fig. 2.- Electrochemical cell  
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Pt electro-deposition has been carried out by two techniques.

- single pulse galvanostatic polarization (GED) 

- multiple pulse galvanostatic polarization (PED) 

The electro-deposition bath containing H2PtCl6 5 mM in H2SO4 1 M at 30 °C and a 

electrochemical cell in a three-electrodes configuration has been used. 

The counter electrode has been a graphite stick. The electrode potentials have been 

measured with respect to a saturated calomel (SCE) reference electrode (0.244 V vs. NHE at 

30 °C). 

Electro-deposition tests and electrochemical characterizations have been done using a 

potentiostat-galvanostat PAR EG&G mod.273A controlled by a computer using an 

appropriate software (CORRWARE, Scribner Inc.) (Fig.3). 

Fig.3. –Electrochemical cell and instruments used for Pt electrodeposition and 
electrochemical characterizations 

Electrochemical characterization of Pt deposits 

After Pt particles deposition, the electrode has been cleaned with deionized water. Then 

the Pt/CNTs and Pt/CP deposits have been investigated by means of cyclic voltammetry (CV) 

to determine the Pt electrochemical active surface (ERS) and study its activity towards 

hydrogen adsorption/desorption processes. CVs have been carried out in H2SO4 1 M at 30°C 

in nitrogen flux. A typical CV curve is reported in Fig.4.

The hydrogen desorption charge QHdes (mC cm-2) has been determined by integrating the 

current density in the potential range between -0.2 and 0.3 V after the subtraction of 

electrochemical double layer current density. The electrical charge QH
o necessary for a 

hydrogen monolayer to desorb from a smooth Pt electrode (1 cm2) is 0.21 mC cm-2.
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The ratio between QH and QH
o allow to calculate the platinum real surface (ERS) 
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Fig.4. – Typical cyclic voltammetry curve. 

Morphological study of Pt deposits 

Since the different Pt electro-crystallization techniques may lead to deposits with 

various morphologies, a high resolution field emission gun - scanning electron microscope 

(FEG-SEM) has been used for a detailed study of the surface at a nanoscale level. 

Chemical analysis of deposits 

The platinum load (LPt) on GDL has been determined by spectrophotometric analysis 

(Fig.5) (UV-VIS spectrometer, Beckman mod. DU65) at =403 nm, with the method 

described in the following. 
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Fig. 5. - UV-VIS Spectrometer  

In a solution containing chloride ions, Pt(IV) can be reduced to Pt(II) by Sn(II) species. 

After reduction, Pt(II) ions react quantitatively with SnCl3
-, forming an anionic complex 

[PtSn4Cl4]4+ with an intense yellow colour. The measurements have been carried out in a 

quartz cuvette with an optical path of 1 cm. Water has been used as a reference. 

The analytical procedure has been the following: 

preparation of Sn (II) chloride solution: 25 g of SnCl2 have been dissolved in hot 

concentrated HCl (37 %wt) and water added up to 50 mL; 

removal of Pt deposition from electrode by hot dissolution for 3 min in 

HNO3/HCl=v/v 1:3; 

the resulting solution has been dried to remove nitric acid and then immersed again 

in 1 mL of HCl 1N; 

0.5 mL of SnCl2 solution have been added to the previous one reaching a final 

volume (Vf) of 5 mL with water; 

a calibration plot has been constructed (Fig. 6) by plotting the absorbance data (after 

blank substraction) as a function of Pt amount (expressed as ppm, [Pt]) contained in 

different standard solutions, prepared by dilution of AECP 20 ppm in HCl 1N; 

LPt (mg cm-2) has been calculated by considering the Sg geometric surface of the 

analysed GDE, with the following equation  

g

3
f

Pt S
10V]Pt[L
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Abs = 0,0773 [Pt]- 0,3365
R2 = 0,9929
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Fig. 6. – Typical calibration plot for Pt analysis 

Pt electrochemical active surface (EAS) is calculated, using QH (mC cm-2), QH
o and the 

platinum load LPt (mg cm-2) measured by chemical analysis, with the following equation: 

1-2

Pt
o
H

H gm
10LQ

Q
EAS

2.2 SINGLE FUEL CELL FABRICATION

Nafion™ membrane 

A Nafion™ (DUPONT DE NEMOURS) membrane has been used.  

The Nafion™ membrane is supplied in large sheets and in acidic form but without any 

particular preservation cares, so that a pre-purification step is required to eliminate organic 

impurities. 

The membrane purification procedure is quickly described. Firstly, the membrane has 

been cut in a suitable size and then submitted to the following treatments: 

- 1 hour in a boiling H2O2 5%wt solution followed by cooling at room temperature  

- 1 hour in boiling deionized water followed by cooling at room temperature 

- 1 hour in a boiling H2SO4 1 M solution point followed by cooling at room temperature 

- 1 hour in boiling deionized water followed by cooling at room temperature 

Now the membrane is ready to be used and it can be kept in deionized water for several 

weeks.
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Membrane electrode assembly (MEA) 

The preparation procedure of MEAs is described in the following, MEAs with two 

different dimension (5 cm2 and 2 cm2) have been prepared. 

Firstly, electrodes previously submitted to electro-deposition have been soaked with a 

Nafion™ 5%wt solution, dried in a oven at 130°C for 1 hour allowing Nafion™ 

polymerization and then cut in a suitable size. 

Subsequently, the following items have been overlapped one by one: a Teflon sheet, two 

filter paper sheets, the first electrode (with a catalytic layer on its top face), the wet Nafion™ 

membrane, the second electrodes (with a catalytic layer turned towards the membrane), two 

filter paper sheets and an other Teflon sheet.  

The whole package has been moved under press pre-heating at 100°C, applying a 

pressure below 10 bars and the temperature has been set at 130°C for 5 min. The assembly 

has been quickly removed and cooled at room temperature between two stainless steel plates. 

The MEA (Fig.7a) obtained can now be tested in a fuel cell station or preserved totally 

immersed in deionized water or between wet filter paper sheets.  

During the assembly procedure filter paper sheets are left in contact with the electrodes. 

These facilitate evaporation of solvents still present in the catalytic ink which avoid a perfect 

adhesion to the contact surfaces. 

MEA/Gasket assembly (MEGA) 

In the case of a 5 cm2 MEA, a Membrane Electrode Gasket Assembly (MEGA) has been 

prepared sealing the MEA, previously prepared, with a silicone-based gasket. This process 

consists in the insertion of MEA in a mould where a silicone-based polymer blend has been 

injected. This mould has been then kept around 70 °C to speed up the hardening process. 

Figure 7b shows the MEGA obtained through this process. With respect to the 

commonly used Viton gaskets or rubberized clothes, a number of  advantages and innovative 

aspects are found: 

- a fast preparation as well as an easy insertion in single cell facilities or stacks; 

- an easy preservation of the  system, which becomes easy to handle and ready to use;  

- a higher Nafion™ membrane saving. 

The points above listed remark very important results for a possible industrial scale 

development aiming at optimizing economic (membrane and labour costs) and technological 

factors (ease of assembly, reproducibility and quality control). 
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a)  b)

Fig. 7. – a) MEA and b) MEA/gasket (MEGA)

2.3 SINGLE FUEL CELL TESTING

Single cell start-up

The single cell start-up is a critical phase in the characterization measurements.  

In fact, during preparation and insertion in the cell, MEAs can undergo damages which 

can compromise electrochemical performance. The critical steps of preparation process are: 

thermal and compression treatment necessary to prepare MEA; silicone blend injection and 

gasket formation; MEA locking inside single fuel cell test facility.

Generally, thermal treatments occur in a temperature range wherein used materials are 

stable. Nevertheless a Nafion™ membrane dehydration is seen to occur. Pressure applied on 

the MEA is instead dangerous to diffusive and catalytic layers, leading to possible worsening 

of morphological properties (thickness and porosity), hence, electrochemical performance. 

Sometimes different performances can be ascribed to problems due to the reproducibility of 

MEA fabrication process. Finally, also the presence of impurities in the system influences its 

electrochemical performances.  

Since at the beginning a MEA could not be in the optimal condition for working, the 

first single cell start-up should be led in a different way. In order to ensure a suitable 

humidification of Nafion™ membrane, the single fuel cell is left for several hours at constant 

temperature under fuel and oxidant humid gas flow: thus, a progressive hydration of the 

Nafion™ membrane is guaranteed.  

This phenomenon is clearly characterized by an ohmic resistance decreasing during the 

current application. 

Electrochemical characterization 
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Each single MEAs/MEGAs have been separately investigated by electrochemical 

characterization.

Electrochemical measurements (impedance spectroscopy and polarization curves) have 

been carried out by means of a potentiostat-galvanostat Autolab PGSTAT 30 combined with a 

Current Booster (ECO CHEMIE). Finally, data analysis has been done using the software 

FRA. 

Measurements have been performed in a two electrode symmetrical configuration: 

working electrode and counter electrode as an anode and cathode of the fuel cell respectively,

both fed with hydrogen. This way makes it possible to compare the behaviour of the different  

anodes because the obtained results can be related to a reference cathode, equal for every cell. 

Some measurements, instead, have been recorded feeding the cathode with oxygen and the 

anode with hydrogen, simulating normal working condition of a fuel cell. 

Electrodes prepared by electro-deposition have been used as anodes, while a in-house 

electrode EFE3 obtained by spraying and prepared with a catalytic ink (containing 30%wt Pt, 

LPt =0,54 mg/cm2), has been used as a cathode in all the measurements. 

The possibility of evaluate and compare single assemblies before the realization of a 

stack, early discarding those systems that do not reach a fixed standard, represents a 

promising and interesting perspective for a forthcoming industrial scale-up. The “death rate” 

of assemblies is nowadays one of the biggest technological obstacles to PEFCs’ industrial 

scale-up. To overcome this problem we aim at the development of totally reusable assemblies. 

For example, the systems studied and characterized in this work will be used again for further 

scale-ups. 
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3. PREPARATION OF SUBSTRATES AND THEIR CHARACTERIZATION 

Electrodes are made by a hydrophobic sheet of carbon paper as a support over which a 

layer of carbon black powder or CNTs is deposited. In common electrodes this layer acts as a 

gas diffusion layer (GDL). 

The carbon powders used in this work have been the Vulcan XC-72 and the Super P. 

These two types of carbon show very different morphological features which may influence 

the final product of the spraying step.

Figures 8a and 8b show SEM images of the carbon powders Vulcan XC-72 and Super P 

while Figure 8c shows multiwall carbon nanotubes (MWCNTs) SEM image. From the 

analysis of these images it can be turned out that the two powders are made by different 

particle compositions. The first appears heterogeneous with big and small particles, while the 

second show a higher homogeneity. 

a b
a)       b)  

 c

c)

Fig. 8. – Carbon substrates: a) Vulcan XC-72; b) Super P; c) MWCNTs.
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Figures 9a and 9b show GDL electrodes prepared by spraying over carbon paper the 

two above mentioned carbon powders and CNTs (Fig. 9c). In order to decide which GDL 

electrode is the most suitable for the use in GDE, all GDLs have been morphologically 

analysed. 

From SEM images it is clear that in the case of Vulcan XC-72 the spraying procedure to 

obtain GDLs led to not unusable electrodes. In fact, the carbon paper surface is not 

homogeneously covered – carbon paper fibres are evident – probably due to poly-dispersion 

of carbon particles’ dimensions. 

GDL from Super P carbon powder is instead superficially homogeneous, even though 

some cracks are visible due to solvent evaporation upon thermal treatments.

a)     b) 

c)
Fig. 9. - SEM images resulting from spraying depositions: a) Vulcan XC-72;  b) SuperP ; 
c) MWCNTs  over carbon paper 
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Pt electrodeposition over GDLs and their characterization 

Before deposition, electrodes have been cycled between oxidative and reductive 

potentials in order to increase the hydrophilicity of the carbon surface, for the reasons 

explained in the following paragraphs. 

During electro-deposition, the thickness of catalytic layer is controlled by the electrolyte 

penetration depth into the un-catalyzed carbon electrode, this being depending on the 

hydrophilic character of the electrode carbon. In the case of an excessive hydrophilicity, the 

electrolyte penetrates too deeply and the resulting catalytic layer is thicker than desired. 

Conversely, a highly hydrophobic carbon deposit leads to thin catalytic layer possibly affected 

by dendritic formation. Thus, the surface properties of carbon support must be optimized in 

order to obtain particles and catalytic layers of the desired dimensions and thickness. 

The Super P and CNTs substrates have been treated with 50 voltammetric cycles (CV) 

in the voltage range -0.3 ÷ 1.2 V vs. SCE in a H2SO4 1 M + CH3OH 0.1 M solution. This is 

the treatment leading to the formation of hydrophilic groups favouring the electrolyte 

permeability. 

Then a CV of a bare GDL has been recorded in H2SO4 1 M after N2 purging to eliminate 

oxygen (Fig. 10). It is visible the absence of current signals due electrodic reactions in the 

whole voltage range except around 0.3 - 0.5 V vs. SCE where a reversible peak is ascribed to 

the redox couple quinone/hydroquinone (E°=699 mV vs. NHE at pH=0 and T=25 °C) 

according to the equilibrium: 

QHe2H2Q 2

Such a couple is easily found on various types of carbon. Anyway, due to its low 

intensity, this redox feature is negligible in presence of deposited Pt. 
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Fig. 10. – Super P and CNTs’ CVs after treatment in CH3OH



22

4. SINGLE FUEL CELL of 5 cm
2

4.1 ELECTRODES PREPARATION

Electrocatalyst deposition has been conducted over an un-catalyzed GDL. Ten different 

electro-depositions have been done changing the electric charge in order to obtain 

nanostructured particles. The parameters of each deposition are: 

- “Ged 0”: GED QED=97.7 mCcm-2, 150s in AECP 5mM+H2SO4 1M over Super P GDL

- “Ged I”:  GED QED=977.1 mCcm-2, 150s in AECP 5mM+H2SO4 1M over Super P GDL 

- “Ged II”: GED QED=977.1 mCcm-2, 150s in AECP 5mM+H2SO4 1M over Super P GDL 

- “Ged III”: GED QED=977.1 mCcm-2, 150s in AECP 5mM+H2SO4 1M over Super P 
GDL  

- “Ged B”: GED QED=977.1 mCcm-2, 150s in AECP 5mM+H2SO4 0.1M over Super P 
GDL 

- “Ged C”: GED QED=1068.7 mCcm-2, 150s in AECP 5mM+H2SO4 0.1M over Super P 
GDL 

- “Ged D”: GED QED=1206.1 mCcm-2, 150s in AECP 5mM+H2SO4 0.1M over Super P 
GDL 

- “Ped A”: PED QED= 899.1 mCcm-2, 150s ton=0.4 toff=0.5 in AECP 5mM+H2SO4 0.1M 
over Super P GDL

- “CNTs 32”: GED QED= 244.3 mCcm-2, 150s in AECP 5mM+H2SO4 1M over MWNTs 
GDL  

- “CNTs 96”: GED QED= 732.8 mCcm-2 , 150s in AECP 5mM+H2SO4 1M over MWNTs 
GDL 

The completion of electrocatalyst deposition has been confirmed by a CV in H2SO4

revealing peaks associated to Pt and PtOx reactions (Fig.11).  

The morphological analysis (Fig.12) evidences that a uniform deposition with nearly 

mono-dispersed particles is possible to obtain. 
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Fig. 11. – Super P and CNTs’ CVs after Pt electrodeposition 
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a)      b) 

Fig. 12. –SEM images resulting from electro-depositions over a) Super P and b) CNTs 

Parameters extracted from electrochemical and chemical characterizations are resumed 

in the following table: 

Sample Ged 0 Ged I Ged II Ged III Ged B Ged C Ged D Ped A CNTs32 CNTs96 

LPt (μg/cm-2) 11,9 47,6 49,7 50,2 57,7 18,6 18,0 8,34 35,5 67,8 

ERS (cm2) 138,9 332,5 467,3 607,5 529,9 100,2 39,2 176,8 416,4 641,5 

EAS(m2g-1) 1167,4 698,4 940,3 1210,2 918,4 538,8 217,7 2120,6 1173,0 946,1 

4.2 SINGLE FUEL CELLS FABRICATION AND PREPARATION

Usually, PEFCs electrodes are made by three adjacent carbon layers (carbon paper, 

diffusive layer, catalytic layer). In this work, instead, the electrocatalyst has been more easily 

deposited directly over the diffusive layer, forming a few microns penetrating catalytic layer.  

Figure 13 shows a MEA cross section made by a EFE3 cathode and an electrodeposited 

anode. During the sample preparation for SEM analysis the carbon paper support detached 

from the rest of the anode. EDX analysis shows Pt localization in the catalytic layer of EFE3 

cathode and electrodeposited anode (Fig. 13 c). 

The SEM image clearly shows the 5 different layers and their thickness. The Nafion™ 

112 has a thickness around 30 μm (dark layer in the middle). Then, on the cathodic side a 

more compact catalytic layer and a diffusive layer with PTFE and carbon agglomerates are 

evident. It is worth noticing the different thickness of the two electrodes. The EFE cathode 

has been prepared by spraying over the GDL a alcohol based ink containing a Pt/C 30 %w

powder and Nafion™, as a catalytic layer. While the anode has been prepared via Pt electro-
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deposition directly over the GDL and then covering with Nafion™, as already mentioned 

above. Thus the anode results much thinner. 

Electrochemical characterization

Every electrochemical measurement has been carried out in a test facility FUEL CELL 

LOAD UNIT series 890 (Scribner Associates, Inc). 

a)

b)  c)

Fig. 13. – a) and b): SEM cross-section images of MEA; c) EDX analysis evidencing the Pt 
deposits.

Measurements have been conducted at equilibrium potential applying a sinusoidal 

tension of 10 mV amplitude in the frequency range 15-0.1 kHz. Electrode flux was 200 mL 

min-1 at maximum humidification conditions. The high frequency real part of impedance 

represents the cell resistance R , which is the sum of different contributions (membrane, 

electrodes, aluminium and graphite plates). Spectra consist mainly of a half-circle, described, 

according to Boukamp23, by an equivalent circuit R (RPC). Here, R  is the sum of electrodes 

and electrolyte resistance, RP the polarization resistance coming from the sum of ohmic, 

Anode 

Anode 

Cathode

Cathode

Anode Cathode



25

charge transfer and diffusion contributions and C is the pseudo-capacity of the 

electrode/electrolyte interface (accounting for the electrochemical double layer too). 

The first tested cells have been those made by Ged I, Ged II, and Ged III samples. The 

primary problem to face has been how much Nafion™ had to be deposited over the 

electrodes. Previous studies2 reported that the optimum amount of Nafion™ to mix together 

with the catalytic ink ranges from 10% to 15% of the Pt/C ratio. In this case these percentages 

could not be applied due to the very low Pt load after electrodeposition. 

Thus, the three cells have been realized with the same conditions for anodic 

electrodepositions but with different amounts of Nafion™: in Ged I higher than 15% (120 mg 

Nafion™ 5%), in Ged II without Nafion™ and in Ged III with Nafion™ in the range 10%-15% 

(0.1 mg Nafion ™5%).

Figure 14 shows the Nyquist plot obtained by measuring the cell impedance at OCV, 

25°C and optimal humidification conditions. 
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Fig.14.- Nyquist plot at OCV, 15-0.1 kHz for electrodeposited carbon powder electrodes. 

In Table I the total resistance values are reported. Data in last column represent the ratio 

between the measured cell resistance (Rel) and a standard cell resistance with Nafion™ 112 

(RNafion™, around 0.18-0.20 cm2).
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Table I. Results of impedance measurements on cells with different amounts of Nafion™

Sample Z’/  RLF/ Rel/  cm2 Nafion 112 

Ged I (120 mg Nafion™5%) 0.16 0.233 0.82 4.1 

Ged II without NafionTM 0.12 0.432 0.61 3.0 

Ged III (0.1 mg Nafion™5%) 0.11 1.653 0.55 2.8 

Ohmic resistance is calculated by the intercept of the half-circle with abscissa axis in the 

high frequency region. The lowest ohmic resistance is found for the cell with an intermediate 

Nafion™ amount, while the higher resistance is found for the higher amount of Nafion™. 

Polarization resistance has a different trend and is found to be the lowest for the highest 

amount of Nafion™ and highest when the membrane amount is low. Polarization resistance 

decreases as electrochemical area increases. The obtained result is explained by considering 

that Pt particles are dispersed inside the diffusive layer and only partially at the 

membrane/electrode interface. Thus, a high amount of Nafion contributes increasing the most 

inner catalytic sites reducing the polarization resistance, but increasing the resistance at the 

membrane/electrode interface. 

In other words, when a high amount of Nafion™ is present, although it is more difficult 

to reach the reaction sites, this effect is balanced by the higher amount of active Pt. This 

explanation is consistent with literature findings24 reporting that the amount of Nafion™ to 

add is inversely proportional to the Pt load. The ohmic resistances of 15% and 0% Nafion™ 

electrodes are similar because they are due to the superficial Pt in contact to the membrane. 

Nevertheless the presence of too little Nafion™ does not increase very much the active area 

and obstacles the gas diffusion to active sites at the interface. 

The second aspect arisen from these first test measurements has been the too low 

quantity of deposited Pt, unable to make the cell run. Hence, a deposition with the same 

applied charge has been conducted but in a more diluted H2SO4 solution to increase the 

process efficiency. Figure 15 shows Nyquist plots for cells with anode Ged III and Ged B and 

in table II results are reported. 

It is evident that the impedance of the electrode obtained from a more diluted acid 

solution is lower than Ged III’s. In fact chemical analysis revealed a higher Pt load, hence a 

lower polarization resistance. 
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Table II. Results of impedance measurements on cells with electrodeposited Pt in 1 M and 0.1 
M H2SO4 solutions

Sample Z’/  RLF/ Rel/  cm2 Nafion 112 

Ged III H2SO41M (~0.1 mg Nafion 5%) 0.11 1.653 0.55 2.8 

Ged B H2SO4 0.1M(~0.1 mg Nafion 5%) 0.09 0.411 0.43 2.1 

In the case of electrode CNTs96 preliminary chemical analyses reported a high Pt load, 

encouraging to use this electrode for a cell. The higher amount of catalyst electrodeposited 

along with the electroactive and high kinetics properties of this material allowed to achieve 

higher current than previous cases (Table III and Fig.16). This results is noteworthy if 

compared to the commercial PEFCs working with 10 times higher Pt loads. 
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Fig.15.- Nyquist plot at OCV, 15-0.1 kHz for electrodeposited carbon powder electrodes. 

The results here obtained are referred to a preliminary research step. Future plans will 

be focused on the possibility of depositing higher Pt loads by controlling the electrodeposition 

times and on the study of the correlation between Pt load and optimum Nafion amount. 

Electrodes realized with nanomaterials such as CNTs will be the main object of our 

investigations.
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Table III and Fig.16.- Polarization curve obtained from CNTs96 anode cell.

4.3 CONCLUSIONS

This work has been focused on the fabrication of a prototypical polymer electrolyte fuel 

cell at the ENEA-Casaccia R.C., putting in evidence technological problems and promising 

results. 

The MEGA technology has shown to be effective and reliable, offering a number of 

advantages:

operative quickness both in the preparation of assemblies and their cell setting-up;  

possibility of storing the assemblies as ready-to-reuse devices for indefinite time; 

qualitative direct observation and control on ante-operam characterization in 

single-cell systems (critical during experimental phase and especially during 

production);

polymeric membrane saving; 

the silicone-based material used for gaskets is chemically and morphologically 

inert, with mechanical properties indifferent to repeated use. 

The experiments conducted show the validity of the system under different point of 

views.

The electrochemical impedance spectroscopy (EIS) allowed for useful comparisons 

between different electrodes via the interpretation of the associated equivalent circuit models. 

These measurements demonstrated, as a drawback, that the electrode/electrolyte interface 

resistance is 2 to 4 times higher than for a standard cell.  

E/V 0.95(EOCV) 0.90 0.85 0.80 0.75 0.70 

i/ mA 0.02 4.43 18.04 40.8 78.1 112.2
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EIS experiments also evidenced the positive influence exerted by the addition of Nafion 

on the cell resistance, while regarding the Pt load deposited over the diffusive layer, a 

compromise value has been determined taking into account points like Pt saving and increase 

of cell resistance.  

The cell prepared from CNTs based electrode has resulted in the system with the best 

electrochemical properties thanks to the higher number of Pt catalytic sites, being the total Pt 

load the same as the other systems. In addition, a higher electroactivity and faster electron 

transfer kinetics allowed to achieve higher current densities. 

Results obtained in this preliminary phase are still to be optimized together with the 

investigation on procedures allowing for depositing higher amounts of active Pt and optimal 

Nafion quantities. 
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5. SINGLE FUEL CELL of 2 cm
2
:

5.1 ELECTRODES PREPARATION

Seven different electro-depositions have been done changing the electric charge in order 

to obtain nanostructured particles. In the following table the parameters of each deposition are 

described.

Table I: Platinum loading (LPt), electro-deposition charge density (Qdep) and duty cycle PED 

parameter of GED, PED and SD platinum electro-catalysts. 

5.2 SINGLE FUEL CELLS FABRICATION AND PREPARATION

The MEAs have been tested in single fuel cell station (Scribner) with a geometric area 

of 2 cm2 (2.1cm x 0.9cm) and fed with humidified H2/O2 at constant flow rates (50 cm3 min-1

with a Thumidi.= 80°C and 100 cm3 min-1 with a Thumidif.=65°C, respectively), at the same 

pressure both for anode and cathode (1.2 bar abs). The cell temperature has been maintained 

at 70°C. 

In Fig.17 the best polarization curves of the MEAs obtained in the experimental 

conditions previously described are displayed.

The cathode used in these MEAs is prepared by different deposition method: SD 01 by 

spraying deposition, GED 01 (Qdep=36 C cm-2) by single pulse galvanostatic electro-

deposition and PED 07 (Qdep=8 C cm-2) by multiple pulse galvanostatic electro-deposition.  

The membrane electrode assembly has been prepared using a Nafion™ 115 membrane. 

It is worth to note that even if the MEAs performances are comparable, their Pt loadings are 

very different: SD 01 presents the highest LPt (0.84 mgPt cm-2) with respect to GED 01 (0.66 

mgPt cm-2) and PED 07 (0.29 mgPt cm-2).

Samples LPt / mgPt cm
-2

 Qdep / C cm
-2

 Duty cycle % 

SD 01 0.82 - - 

GED 01 0.66 36 - 

GED 03 0.06 8 - 

PED 05 1.15 76 66 

PED 06 1.08 36 33 

PED 07 0.30 8 33 

PED 08 1.11 76 33 
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These results are confirmed taking into account the maximum specific power density 

values (Pmax, kW m-2 gPt), as shown in Fig.18.
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Fig.17. - Polarization curves of MEAs prepared by multiple pulse galvanostatic electro-

deposition ( PED 07), single pulse galvanostatic electro-deposition (-- -- GED 01) and 

spraying deposition (  SD 01).
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Fig. 18. - Maximum specific power density values for SD 01, GED 01 and PED 07. 

It is clear that the PED technique gives a good nanostructured Pt particles localization, 

achieving higher catalyst utilization. The smaller Pmax value of GED 01 is probably due to the 

morphology of its Pt deposits: the catalyst particles are almost ten times bigger than those of 

PED 07 (Fig. 19 a and b) and the nanostructured surface presents longitudinal ridges for GED 

01 while lamellar triangular shapes for PED 07 (Fig. 19 c and d). 
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a)                                                             b) 

c)                                                             d) 

Fig. 19. - FEG-SEM images at 80KX for a) GED 01 and b) PED 07; at 250KX for c) GED 01 

and d) PED 07. 

Based on these results our attention has been turned to the effect of PED parameters on 

the electrocatalyst behaviour.

Fig.20 shows the cell tests results of three MEAs prepared by PED at 33% duty cycle 

and at different charge densities values (Qdep=8 C cm-2, Qdep=36 C cm-2, Qdep=76 C cm-2).

Increasing charge density, MEAs performances tend to decrease, especially for the PED 08 

(LPt= 1.11 mg cm-2) deposited with the highest Qdep.

Note that PED 07 and PED 06 show almost the same performance but the former has a 

LPt three times lower than the latter. Further, the Pt loading is similar in PED 06 and PED 08 

but the performance obtained are very different.  
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Fig.20. - Polarization curves of MEAs prepared by multiple pulse galvanostatic electro-

deposition at 33% duty cycle (  PED 07, Qdep=8 C cm-2), (  PED 06, Qdep=36 C cm-2)

and (  PED 08, Qdep=76 C cm-2).

These behaviours can be associated with the influence of the morphology on Pt particles 

catalyst activity. Charge density exerts an important effect on properties such as size, shape 

and distribution of the deposit. When a high charge density is used for deposition, particles 

aggregate, resulting in large Pt islands not homogeneously spread on diffusive layer surface 

(Fig.21 a, b and c). Moreover, at increasing charge density the particle size of the deposit 

become bigger losing their nanostructured surface (Fig.21 d, e and f).

An interesting evidence of PED technique carried out in acidic solution is represented 

by the non-linear trend (Fig.22) of Pt loading vs applied electro-deposition charge density, as 

commonly expected. 

LPt rises drastically at the beginning, together with the deposition charge density and 

then tends to stabilize around a constant value. This is due to the reduction of Pt deposition 

efficiency. At the beginning only Pt deposition reaction occurs on the substrate, because H+

discharge overpotential is very high on carbon materials. As the metal loading increases on 

the surface, this overpotential noticeably decreases and the applied current is shared with the 

H+ reduction, lowering Pt deposition efficiency. 

In conclusion, the electric field is responsible of Pt cluster aggregation and of 

nanoparticles migration on the exposed Pt surface, losing the characteristic nanostructured 

morphology of the deposits, strictly related to their electro-catalytic activity. This electric 

field effect is as much marked as the deposition time is long. 
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a)                                                               d) 

b)                                                               e) 

c)                                                               f) 

Fig.21. - FEG-SEM images at 10KX for a) PED 08, b) PED 06 and c) PED 07; at 250 KX for 

d) PED 08, e) PED 06 and f) PED 07.

In order to study thoroughly the influence of PED parameters on the performances of the 

deposits, two different duty cycles (33% and 66%) have been chosen. PED 08 at 33% and 

PED 05 at 66% duty cycle with the same deposition charge density of 76 C cm-2 have been 
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thus prepared and the corresponding polarization curves have been presented in Fig.23. 

Although the Pt loading of PED 05 and PED 08 is nearly the same (around 1 mgPt cm-2),

remarkable differences in cell tests results have been shown, probably due to the Pt particles 

activity and morphology. 
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Fig.22. - Pt loading (LPt) vs applied charge density (Qdep) in a multple pulse electro-

deposition.
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Fig.23. - Polarization curves of MEAs prepared by multiple pulse galvanostatic electro-

deposition at 33% duty cycle (  PED 08, Qdep=76 C cm-2) and at 66% duty cycle (

PED 05, Qdep=76 C cm-2). 
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In fact, comparing SEM images at 250 KX, Pt particles surface of PED 08 deposit 

(Fig.21d) appears smoother than that of PED 05 (Fig.24a) and each particles is characterized 

by a thin and peaked structure, not active in the catalytic reaction. 

Despite the different PED parameters varied during deposition, the Pt particles distribution 

observed for both samples (Fig.21a PED 08 and Fig.24b PED 05) is characterized by islands 

formation exclusively depending on the applied charge density value (Qdep=76 C cm-2). 

a)                                                               b) 

Fig.24. - FEG-SEM images for PED 05 a) at 250KX and b) at 2KX.

Finally, since the best result has been obtained for PED deposited with 8 C cm-2 another 

GDE has been prepared by GED at the same charge density. The spectrophotometric analysis 

of sample GED 03 gave a Pt loading of 0.06 mgPt cm-2 but no polarization curve has been 

recorded for GED 03 MEA due to the extremely low LPt.

It is very interesting to compare the cell tests results with the electrochemical 

characterization by CVs (Table 2). In particular, the EAS values are extremely different: 

nearly ten times higher for SD 01 than those of PED deposits. This evidence is not in 

agreement with the cell tests, since their performances are quite comparable.  

This behaviour could be explained considering the triple interface contact as the active 

reaction site accessible both to electrons and protons. In CVs this zone is formed by Pt 

nanoparticles deposited on carbon substrate and by the electrolyte liquid solution, while in 

cell experiment it is constituted by Pt/C electro-catalyst and by the polymer electrolyte 

membrane (Nafion™). Hence, in CVs since the electrolyte can easy reach the whole 

Pt/substrate surface, all the active reaction sites are detected. In the cell tests the active 
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electrocatalyst particles are only those in direct contact with the solid electrolyte membrane or 

linked to that by the continuous Nafion™ film.  

In conclusion, electro-deposition techniques represent an extremely suitable method to 

Pt localization in reaction sites, improving catalyst utilization and lowering Pt loading with 

high PEFC performances.  

Table II: Electrochemical active surface (EAS) for PED deposits and SD 01. 

5.3 CONCLUSIONS 

This work aims to investigate an alternative procedure respect to the traditionally used 

spraying technique to PEFC electrodes manufacturing. By Pt localization on the uppermost 

GDL surface, it is possible to decrease the thickness of the catalyst layer as well as the Pt 

loading giving a noteworthy increase of the efficiency in the noble metal usage. 

Results indicate that single and multiple galvanostatic electro-depositions are suitable 

for the fabrication of electrodes characterized by very low Pt loading and high catalyst 

utilization. 

By varying the experimental parameters, such as charge density or duty cycle, it is 

possible to control deposits morphology and Pt particles distribution. Generally, GED 

produces a more homogeneous distribution of catalysts onto the surface substrate than PED. 

An island growth, large Pt clusters and smooth particles show the worst electrochemical and 

electro-catalytic results. The best structure is identified as the lamellar triangular shape with a 

fine extended nanostructured surface. 

Samples EAS / m
2
 gPt

-1

SD 01 113.02 

PED 05 9.90 

PED 06 8.32 

PED 07 10.81 

PED 08 9.46 
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It is necessary to compare the electrochemical CVs results with those of cell tests in 

order to evaluate the real electro-catalytic performances strictly dependent on Pt localized in 

the active reaction sites. 
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