

INTERNATIONAL WORKSHOP ON DEGRADATION ISSUES OF FUEL CELLS

Second Announcement and Call for Abstracts

19 - 21 SEPTEMBER, 2007

Location: Hotel CRETA Maris, Heraklion, Crete, Greece

Supported By:

Endorsed By:

INTERNATIONAL WORKSHOP ON DEGRADATION ISSUE OF FUEL CELLS 19-21 September 2007, Crete (Greece)

DEGRADATION OF ELECTRODEPOSITED CATALYSTS FOR POLYMER ELECTROLYTE FUEL CELLS

A. Pozio, A. Cemmi,

ENEA, C.R. Casaccia, Via Anguillarese 301, 00123, S. Maria di Galeria (Rome), Italy. alfonso.pozio@casaccia.enea.it

In this work platinum nanoparticles were deposited onto conventional gas diffusion electrodes by electrochemical deposition in order to achieve high electrocatalyst utilization.

In particular, a solution containing H_2PtCl_6 (ECPA) 20mM in 1M H_2SO_4 at room temperature is used for galvanostatic electrodeposition at constant (GED) and pulsed current (PED) to obtain an homogeneous catalytic layer: in both cases a reproducible reduction process of the noble metal was carried out.

Moreover, this method allow to prepare platinum catalyst characterized by spherical particles with a fine nanostructure (2-4 nm) on the surface which shows good electrochemical performances.

Chemical analysis, cyclic voltammetry (CV) and FEG-SEM technique are used to determine electrochemical characteristics of Pt deposit and the influence of electrodeposition method on the nano-morphology. Electrocatalytic performances were investigated by methanol oxidation reaction (MOR) in H_2SO_4 .

Ageing studies were lead by CV and results were characterized by means FEG-SEM; in addition long-term tests were carried out on our deposits in a polymer electrolyte fuel cell supplied with humidified hydrogen/air.