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STUDY ON THE INTERFACIAL CHARRACTERISTICS OF POROUS
NICKEL ELECTRODE FOR MOLTEN CARBOMNATE FUEL CELL BY MEANS
OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

L. Giorgi, E. Simonetti and A. Pozio
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00060 8. Maria di Galeria (Rome), Italy

The kinetics of gas electrode reactions in molten
carbonate are very important to understand the electrode
orocesses in  the MCOFC.  The experimental difficulties
relaced to working in molten carbonate systems have
restricted the evaluation of kinetic data to submerged flat
electrodes in excess of electrolyte. The conditions of a
porous gas diffusion electrode are guite different and it
ig important to wverify the wvalidity of the kinetic
parameters also in these conditions.

The cathodic process {1!EGE+EG;+EE'HCD3E'3 has been
extensively studied and many approaches have been utilized
in the past, in crder to establish the r.d.s. and to obtain
che numeric values of the reaction orders relative to Og
and CO5.

The results reported in literature, both on flat [1,2]
and porous [3,4] electrodes, are contradictory and the
reaction mechanism for 0 reducticn in meolten carbonates is
not well understood.

The aim of the present paper is to investigate the porous
nickel electrode/molten carbonates interface, in the case
of an in situ lithiated nickel oxide electrode, by means of
sleccrochemical impedance spectroscopy (EIS).

EXFERIMENTAL

A symmetrical cell, made of recrystallized alumina, was
assembled using two cathodes instead of a cathode and an
ancde. The elecrtrodes were two identical porous Ni disks
(geometric area 3 cm?, porosity 75i5%, mean pore size 4:1
um) . The tile was 48%, y-LiAlOs and 52%, lithium/potassium
carbonate mixture (Li/K=62/38 $pq1) -

The cell was operated at 650:2 °C and fed with a C0= /04
mixture at variable composition.

A potentiostat-galvancstat Solartron mod.1286 and a FRA
golartron mod.1250, both controlled by a HP mod.310
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computer, were used to perform Ehe EIS measurementcs. The
cell was polarized at i=0, with a superimposed sinusoidal
signal (236 pAfcm2), in the fregquency range from 0.1 Hz to
65 KHEz.

SPECTRAR ANALYSIS

A typical EIS spectrum at 650 °C (p0s=0.14 atm, pCO3=0.30
atm) is shown in fig.1. At a first lock the spectrum is
clearly depressed, due to the porous electrode stroucture.
This phencmenon depends on gas composition: at pCOp<0.3
atm, whatever is the pO,, the depression angle value is so
that the impedance phase angle is lesgs than the thecretical
value of 22.5° for a porous electrode [5]. Such a condition
is wverified for #&2w/D < 10, where & is the electrolyte
thickness, « the angular freguency and D the diffusion
coefficient of reacting species. This uneguality is only
true when a very thin electrolyte layer is present [6].

Starting from this point of view, the equivalent
electrical c¢ircuit for the cathode/electrolyte interface
can be simulated by a network made up with a charge
transfer resistance, a double layer capacitance and a
characteristic element of a system in which 1s present a
finite diffusion layer:

(1) Zolw) = tanh (B(jw)9-3]1/[¥° (ju)P-3]

in which @ is the angular freguency, B and Y® are two
parameters containing the diffusion coefficient of the
reactant species and the film thickness.

The presence of a Z, element is a confirmation that the
pores of the cathode are not completely flcoded: the pore
walls are coated by a thin film of electrclyte and the
concentration gradient of active species extends completely
to the f£film thickness.

At constant pCO,, as pO, increases, both the total real
part of impedance (R} and the maximum of the imaginary
part of impedance (ZImpg,) decrease. On the contrary when
p0s is censtant, as pCOz increases, both Ry and ZlMpay
inerease. As a conseguence it can be concluded that: the
p0, has a positive influence on the cathedic reaction,
while the pC0; has a negative influence. These results
agree with the mechanisms proposed in literature [1,2,3,4]:
(2a) POP i, = k pog?-375 poog-1.23
(2b) SOP s = ko pogl-S25tnaa st
(zc) POMCE ig = k p0y0-375 poo,-0-25
in which POP, SOP and POMCF means, respectively, peroxide
path, superoxide path and peroximonocarbonate path.
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ACTIVATION ENERGIES
Several parameters can be easily extract from the

spectra: electrolyte conductivity (e}, total polarization
resistance (Rg), maximum imaginary component of Iimpedance

parameters are thermally actilwvated according to an
Arrhenius type eguation. The activation energies are
summarized in Table I, from which it is clear that ¢ and
fmax are relative to exothermic phenomena, while Rp and

ZIMp= are relative to endothermic processes.
The negative dependence of Ry from temperature peoints out

an increase in charge transfer and diffusion rate.
Nevertheless, it is difficult to split the influence of the
single processes on the overall phenomenon.

The same behaviour is shown by -ZIMggy. The physical
meaning of such a parameter is difficult to explain, also
if yuh [3] tried to use it to determine the reaction orders
of 0s/C0s; reduction.

The fmpax 15 4inversely related to the system tCime
constant, therefore the electrodic processes are
accelerated by temperature.

CHARGE TRANSFER RESISTANCE AND REARCTION ORDEERS

The spectra can be subdivided in two regioms: the low-
medium frequency one dominated by diffusien and the high
frequency one in which the kinetic aspect is prevalent.

Using a fitting procedure [7] it was possible to obtain
the equivalent circuit shown in fig.2; a good correlation
between the high frequency resistance (Rpg) and partial gas
pressures was found. That means the Rpf can be associated
te the charge transfer resistance Rpy. In the case of
porous electrodes the relationship between Ry and Rps is
expressed by:

(3) Rhel 5= Ree
and
{4) 1/Rct? = pOsfpcogt

Keeping constant the partial pressure of a gas, it is
possible to derive the reaction order relative to the other

gas:
(5a) log Rpe = -1/2 log k' - af2 log pOz
(5b) log Rpg = -1/2 log k" - b/2 log plO;

Therefore from the slope of the previcus eguations it is
possible to draw out the reaction orders.
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The reaction orders calculated from different series of
measurements, made on two different cells, are shown in
Table II.

The mean calculated reaction orders are: a=0.37+0.09
and b=-1.34+0.1%. These results are in good agreement with
the theoretical ~wvalues for the peroxide mechanism,
expecially in the case of oxygen reaction order.
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Table I - Activation energies cobtainsd from EIS spectra.

Paramecer Eact
(kJ/mol)

o ig+2

Rp -9445

- Z1Mpa -B8+3
Ernax 208417
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Table II - Reaction orders calculated from EIS data.

POy (atm) | pCOz (atm) | a i b r
| |
0.10+0.80 .10 ! 0.304+0.08 | Q.98
0.05+0.65 0.30 l u.ssia.ﬂel 0.91
0.10+0.60 0.30 § D.4qiﬂ.ﬂai 0.94
0.14 0.10+0.60 | | -1.37E0n23 [N, 85
0,14 0.05+0.65 | | -1.28+4+0.20 0. a7
0.50 0.05+0.50 | -1.38+0.14 | 0.98
{ |
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Fig.l - Typical Nio(Li) EIS spectra in molten carbonates.
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Fig.2 - Eguiwvalent electrical circuit for the EIS data of
Fig.0.

[Lw: wire's inductance, Re: electrolyte resistance, R: high

(hf) and low (1f) resistance, @Q: high (hf}) and leow (1L}

constant phase slement]



